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Abstract

A survey of de®nitions, theorems and algorithms for
crystallographic groups are given in a dimension-
independent fashion. These and some tables (including
the Bravais groups up to dimension 6) form the basis of
the computer package CARAT, which can handle
crystallographic space groups up to dimension 6.

1. Introduction

International Tables for Crystallography, Vol A (Hahn,
1995) cannot easily be extended to higher dimensions,
mainly because the number of af®ne classes of space
groups (= af®ne space-group types, e.g. 219 in three
dimensions) grows rapidly with the dimension. Four
(Brown et al., 1977) seems to be the dimension where
such an extension still makes sense. Since there is a
demand for it (Janner & Janssen, 1977; Janssen, 1986;
Janssen et al., 1992), we suggest a set of algorithms and
tables for handling space groups up to dimension 6 in
the present paper. These tables and algorithms have
been put together into a computer package called
CARAT, the ®rst test versions of which are available
via the Internet (http://samuel.math.rwth-aachen.de/
�LBFM/carat/). The general philosophy is to design
parameter sets for isomorphism types of space groups,
which enable the user of the package to construct and
recognize groups. Some basic information is contained
in tables, e.g. a table of Bravais groups; other informa-
tion can be computed, e.g. testing Z-equivalence or
determining generators of normalizers of crystal-
lographic point groups. In some cases, it does not make
sense to output all computable information but to count
the number of objects only and to be able to compare
the speci®c ones in which one is interested.

Obviously, the very basis of designing such a package
is to have precise de®nitions for the equivalence rela-
tions of the groups to be considered. Though they are in
the literature, the short repetition of the basic de®nitions
and structures in x2 will hopefully avoid misunder-
standings. Next comes a description of the basic tasks to
be performed in x3. These vary in dif®culty and
complexity. Therefore, a rough idea of the algorithms

involved might be somewhat helpful; the remaining x4
gives details on that, in particular on the newly devel-
oped algorithms. We have taken pains to enable even
the inexperienced user to get relevant information from
the system, i.e. some global commands are designed to
perform tasks that one would normally do in several
steps. In principle, the user can build up his own library
of groups and identify new groups with the old ones in
his library, if a relevant equivalence exists, or otherwise
add the group to his library. In this way, the system
mimics a learning process.

Since the terminology used by crystallographers and
the one used by mathematicians does not always agree,
we give a dictionary in Table 1 and use mainly the
mathematical notation. Generally speaking, crystal-
lographers prefer to think of their groups as groups of
mapping, whereas CARAT deals with the associated
groups of matrices obtained by choosing a coordinate
system. Another difference is that the crystallographer
usually does his computations in some ®xed coordinate
system by ®xing a `conventional' cell, thus allowing non-
integral coef®ciencts for translations of `centered'
lattices, whereas CARAT prefers to work with coordi-
nates such that the translation vectors of the translation
lattice consist of all integral columns.

2. Basic de®nitions

2.1. General de®nitions and structures

The most important concept of group theory is that of
group actions. This concept cannot be overstressed,
since it is the guiding principle behind most applications
as well as in the general theory and in the present
algorithmic context. It is particularly evident in
geometric situations like in crystallography, where it
makes the basic equivalence relations natural and
algorithmically approachable.

De®nition 1. (Alperin & Bell, 1995.) Let G be a group
with unit element 1 and let M be a set:

(i) G acts or operates on M (from the left) if there
is a mapping G�M! M which takes the pair
�g;m� 2 G�M to the element gm of M such that



g2�g1m� � �g2g1�m for all g1; g2 2 G and all m 2 M

(note on the left side the action map is applied twice, on
the right side one such application is replaced by a group
multiplication) and

1m � m for all m 2 M:

If G acts on M, one calls M a G-set.
(ii) If G acts on M, two elements m1;m2 2 M lie

in the same orbit, if there is a g 2 G with gm1 � m2.
`Being in the same orbit' is an equivalence relation on
M, sometimes denoted by �G, i.e. the G-orbits
Gm :� fgmjg 2 Gg for m 2 M partition M into pairwise
disjoint subsets. The set M= �G of equivalence classes or
orbits is usually denoted by G\M (and called the
quotient M mod G).

(iii) If G acts on M and m 2 M, then
Gm :� fg 2 Gjgm � mg is called the stabilizer of m in G.
(Clearly, Gm is a subgroup of G, in symbols Gm � G.)
The intersection of all stabilizers Gm with m 2 M is
called the kernel of the action (and is a normal subgroup
of G). (Stabilizers in space groups of points in af®ne
space are more familiar to crystallographers under the
name site-symmetry groups.)

(iv) If G acts on two sets M1 and M2, a map
� : M1 ! M2 is called a G-map or compatible with G, if
��gm� � g��m� for all g 2 G and m 2 M1. If � is bijec-
tive, it is called a similarity and the two actions are called
similar.

When one analyses the de®nition of G action on a set
M, one sees that it amounts to having a homomorphism
of G into the group of all permutations of M. Therefore,
one also uses the term permutation representation in this
context. If M carries additional structure, like being an
af®ne space or a vector space and the permutation group
is replaced by the automorphism group of the structure,
the action gets the corresponding attribute, like being
af®ne or linear. This means that for each g 2 G the
induced map �g : M! M : m! gm preserves the
structure of M, e.g. it is af®ne or linear. Of course, if a
group G acts on a set M, each of its subgroups also acts
on M and respects the structure of M if G does. It is also
implicitly understood that G-maps between G-sets with
preserved structures are also compatible with these
structures. The investigation of linear actions of groups

on vector spaces forms an important part of group
theory called representation theory (Alperin & Bell,
1995; Curtis & Reiner, 1962; Serre, 1977). In the sequel,
Km�n denotes the set of all m� n matrices with entries
in K, which is usually the ®eld Q of rational numbers or
R of real numbers, or the ring Z of rational integers.

Example 1.
(i) The general linear group

GLn�K� :� fg 2 Kn�nj det�g� 6� 0, i.e. g is invertible}
over a ®eld K like the ®eld Q of rational numbers or the
®eld R of real numbers acts on the K-vector space Kn�1

of n columns over K by matrix multiplication from the
left. This is a linear action. One checks easily that self-
similarities of Kn�1 as GLn�K� set are given by multi-
plications with nonzero elements of K.

(ii) GLn�R� acts linearly on
Rn�n

sym :� fF 2 Rn�njF tr � Fg, where g 2 GLn�R� maps
F 2 Rn�n

sym onto gÿtrFgÿ1: [Here and in the sequel,
gÿtr :� �gÿ1�tr � �gtr�ÿ1 is the transpose of the inverse of
the invertible matrix g.] The positive-de®nite symmetric
matrices of degree n (`metric tensors') form one orbit
Rn�n

sym; > 0 and the stabilizer of the unit matrix In is the
orthogonal group On�R�.

(iii) GLn�Q� acts on Zn :� fLjL is a full Z lattice in
Qn�1g, where a full Z lattice in Qn�1 consists of the Z
linear combinations of a Q-basis of Qn�1. Here,
gL :� fgljl 2 Lg for any g 2 GLn�Q�, L 2 Zn. This
action is transitive, i.e. it has just one orbit. The stabilizer
of L � Zn�1 is GLn�Z�.

(iv) GLn�Z� acts on all the sets in (i) (ii) and (iii) since
it is a subgroup of each of the groups there. In particular,
a Bravais group can be de®ned to be the stabilizer of a
positive-de®nite matrix F 2 Rn�n

sym in GLn�Z�. Such a
Bravais group is necessarily ®nite; details will be
discussed later.

(v) GLn�1�R� acts linearly on the R-vector space
R1��n�1� of �n� 1� rows by gr :� rgÿ1. The stablizer of
en�1 :� �0; . . . ; 0; 1� is called the af®ne group Affn�R�,
which acts via matrix multiplication from the left on the
n-dimensional af®ne space An�R�, which we de®ne as
An�R� :� fx 2 R�n�1��1jen�1x � 1g consisting of
augmented columns of the form � a

1 � with a 2 Rn�1. In
more concrete terms, the elements g of Affn�R� are
augmented matrices, i.e. matrices of the form

Table 1. Corresponding terms in mathematical and crystallographic terminology

Mathematical terminology Crystallographic terminology

Z-class Arithmetic crystal class
Q-class Geometric crystal class
Bravais ¯ock Bravais type
Af®ne class of space groups Space-group type
Lattice basis Primitive basis
Finite unimodular groups Crystallographic point groups
Degree (e.g. space groups of degree n) Dimension (e.g. n-dimensional space groups)
Stablizers in space groups of points) Site-symmetry groups
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g �
� h

0

t

1

�
;

where h 2 GLn�R� is called the linear part of g, t 2 Rn�1,
and 0 stands for an n row of zeros. The action g of
Affn�R� on An�R� is given by matrix multiplication:

g �
� h

0

t

1

�� a

1

�
�
� ha� t

1

�
:

Requiring h to lie in On�R� rather than in GLn�R� yields
the Euclidean group Eucln of Euclidean motions
(written as matrices). Restricting h even further to be
the unit matrix In yields the translation group. Since
Eucln is a subgroup of the af®ne group Affn�R�, one
obtains the action of the Euclidean group on the af®ne
space An�R� in this set up.

(vi) (Cf. Alperin & Bell, 1995.) If G is any group and
U a subgroup of G, then G acts on the set
G=U :� fgUjg 2 Gg of cosets of U in G by multi-
plication from the left: G�G=U : �g; hU� 7! ghU. This
action is transitive and any transitive action of G on
some set M is similar to this action for a suitable choice
of U, namely U � Gm the stabilizer of any m 2 M in G.
This well known fact will also be used in CARAT to
compute subgroups of ®nite groups: Say G is ®nite and
we are interested in the subgroups H of G containing U.
Then H=U � G=U forms a block for the G-action. A
subset N of the transitive G-set M is called a block if the
images of N under G are pairwise disjoint, i.e. form a
partition of M. Since blocks containing a ®xed m 2 M
are in bijection with the subgroups H with Gm � H � G
and since blocks are usually easy to compute, this gives a
good way to compute subgroups in certain specialized
situations.

The main interest in this paper lies in ®nite subgroups
of GLn�Z� because they turn up as point groups of space
groups. To classify them, we work with various notions
of conjugation action, which can also be de®ned in a
quite general context.

Example 2. (Cf. Alperin & Bell, 1995.) Let G be a
group.

(i) G acts on M :� G via conjugation, i.e.
G�G! G : �g;m� 7! gm :� gmgÿ1. The orbits of this
action are called conjugacy classes of elements and the
stabilizers are called centralizers. This action actually
respects the group structure of M � G, i.e. each g 2 G
induces an automorphism of G, called the inner auto-
morphism induced by g.

(ii) Denote the set of all subgroups of G by U�G�.
Then the conjugation action of G on G induces a
conjugation action of G on U�G�, for which we also use
the exponent notation, i.e. gU :� fguju 2 Ug for any
U � G, g 2 G. The orbits under this action are the
conjugacy classes of subgroups and the stabilizers are
the normalizers, i.e. NG�U� :� fg 2 GjgUgÿ1 � Ug is

called the normalizer of U � G in G. Note that the set
U fin�G� of ®nite subgroups of G is invariant (as a whole)
under the conjugation action of G, and therefore G acts
on U fin�G� as well.

In the notation developed so far, one of the most
complicated issues we are dealing with is to enumerate
GLn�Z�\U fin�GLn�Z�� and to recognize for any given
element U 2 U fin�GLn�Z�� to which conjugacy class it
belongs, or, in more conventional terms: ®nd the
Z-classes �� GLn�Z�-conjugacy classes� of ®nite uni-
modular groups of degree n �� ®nite subgroups of
GLn�Z�� and give a method of deciding to which Z-class
a given group belongs. Since this task gets rather dif®cult
if the degree n gets bigger, we deal with two easier tasks
®rst:

(i) classify the ®nite unimodular groups only up to
Q-equivalence, i.e. up to conjugacy in GLn�Q�;

(ii) classify only the Z-classes of Bravais groups.
Before we go into the details of these two points, we

repeat a metamathematical remark by H. Zassenhaus,
whose pioneering work made the development
presented here possible (Plesken, 1996): Whenever you
classify subgroups, also describe their normalizers. We
give ample evidence of the wisdom of this statement
below. The main reason is that the normalizer plays the
role of a geometric automorphism group of the whole
situation considered.

Remark 1. Let G be a group acting on a set M and let
U � G be a subgroup of G. Then the action of G on M
induces an action of NG�U� on the set U\M of U orbits:

NG�U� � U\M! U\M : �n;Um� 7! nUm � Unm:

In particular, the set

FixU�M� :� fm 2 Mjum � m for all u 2 Ug
is an NG�U� set.

2.2. Rational and integral equivalence: invariant lattices

Classifying Q-classes of ®nite subgroups of GLn�Z�
really amounts to classifying conjugacy classes of ®nite
subgroups of GLn�Q�, i.e. ®nding representatives of
GLn�Q�\U fin�GLn�Q��. This follows immediately from
part (i) of the following remark, which is already due to
Burnside. Because of this, we can often use the terms
Q-class of a ®nite unimodular group and the GLn�Q�-
conjugacy class of groups containing it as synonymous.

Remark 2. Let G be a ®nite subgroup of GLn�Q�:
(i) Z�G� :� FixG�Zn� is not empty, i.e. there exists a

G-invariant lattice in Qn�1. In particular, G is conjugate
under GLn�Q� to a subgroup of GLn�Z�.
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(ii) NGLn�Q��G�\Z�G� is in bijection with the Z-classes
in the Q-class of G.

Proof.
(i) Choose an arbitrary lattice L0 2 Zn and take L to

be the lattice generated by all gL0 with g 2 G. Since all
the gL0 lie in Qn�1 and are permuted by G, one has
L 2 FixG�Zn�. Writing the action of G on L with respect
to a lattice basis amounts to conjugating G into GLn�Z�.

(ii) Easy.

A good example for (ii) is the trivial group
hIni<GLn�Q�.

Note that a Q-class splitting only into ®nitely many
Z-classes is the content of the famous Jordan±Zassen-
haus theorem (Zassenhaus, 1938). We might be able to
provide a list of representatives of Q-classes up to
degree n � 6. An algorithm deciding whether two ®nite
subgroups of GLn�Q� are conjugate is described later
on.

We take the opportunity to demonstrate the use of
maps compatible with group actions in the context of
Remark 2. First, recall from representation theory the
notions of (rational) enveloping algebra

QG :� P
g2G

agg 2 Qn�njag 2 Q for all g 2 G

( )

and of the commuting algebra
CQ�G� :� fc 2 Qn�njcg � gc for all g 2 Gg of a ®nite
subgroup G of GLn�Q�. The centre QG \ CQ�G� of the
enveloping algebra QG has a unique set of primitive
idempotents (or projection operators) e1; . . . ; es, where
s is the number of homogeneous components of Qn�1 as
QG-module, in fact the eiQ

n�1 are the homogeneous
components of this module.

Remark 3. (Plesken, 1978, 1981.) Let G be a ®nite
subgroup of GLn�Q� and e1; . . . ; es be the primitive
idempotents of the centre of QG.

(i) The elements of
Zh:d:�G� :� fL 2 Z�G�jL � �s

i�1eiLg are permuted
amongst themselves by the NGLn�Q��G� action. [The
elements of Zh:d:�G� are called homogeneously decom-
posable² G-lattices.]

(ii) � : Z�G� ! Zh:d:�G� : L 7! �s
t�1 eiL is an

NGLn�Q��G�-map.
(iii) The ®bres of � are ®nite, i.e. for any homo-

geneously decomposable lattice L 2 Zh:d:�G� the set
�ÿ1�L� :� fX 2 Z�G�j �s

i�1 eiX � Lg is ®nite. [In fact,
each X 2 �ÿ1�L� satis®es jGjL � X � L.]

(iv) For any L 2 Z�G� let NL�G� denote the stabilizer
of L in NGLn�Q��G�. For L 2 Zh:d:�G�, the action of

NGLn�Q��G� on Z�G� induces an action of the stabilizer
NL�G� on �ÿ1�L� such that

(a) For X 2 �ÿ1�L� the stabilizer of X in NL�G� is
equal to NX�G�.

(b) Let fL1; . . . ;Ldg be a set of representatives of
NGLn�Q��G�\Zh:d:�G� and for each i, 1 � i � d, let Ri be a
set of representatives of NLi

�G�\�ÿ1�Li�. Then, [d
i�1Ri is

a set of representatives of NGLn�Q��G�\Z�G�.
The reader will have noticed already that writing

matrices with respect to a lattice basis B of L 2 Z�G�
turns G into a ®nite unimodular group GB and N�L� into
N�L�B � NGLn�Z��GB�. Remark 3 will turn out to be a
valuable tool in the algorithmic splitting of Q-classes
into Z-classes. There are some situations where the
crystallographic notion of primitivity (based on a case-
to-case de®nition) is related to the concept of homo-
geneous decomposability above.

2.3. Bravais groups and invariant quadratic forms

In complete analogy to Remark 2, one has the
following remark in respect to the action of GLn�R� on
Rn�n

sym;> 0 described in Remark 2(i), which is also classical,
probably due to Maschke.

Remark 4. Let G be a ®nite subgroup of GLn�R�.
(i) FixG�Rn�n

sym; > 0� is not empty, i.e. there exists a
G-invariant positive-de®nite symmetric matrix. In
particular, G is conjugated under GLn�R� to a subgroup
of On�R�.

(ii) NGLn�R��G�\FixG�Rn�n
sym; > 0� consists of just one

element, i.e. the action is transitive. In particular, any
two subgroups of On�R� that are conjugate under
GLn�R� are conjugate to each other On�R�.

De®nition 2. (Brown et al., 1973, 1977.) Let G � GLn�Z�
be a ®nite unimodular group.

(i) F�G� :� FixG�Rn�n
sym � � fF 2 Rn�n

sym jgtrFg � F for
all g 2 G} is called the space of (invariant) forms of G
and F> 0�G� :� fF 2 F�G�jF positive definiteg is called
the Bravais manifold of G.

(ii) For any subset F of Rn�n
sym containing

at least one positive-de®nite matrix
B�F� :� fg 2 GLn�Z�jgtrFg � F for all F 2 Fg is
called the Bravais group of F .

(iii) B�G� :� B�F�G�� is called the Bravais group of
G.

(iv) Two ®nite subgroups of GLn�Z� belong to the
same Bravais ¯ock or are called Bravais equivalent, if
their Bravais groups are Z-equivalent.³

² In the original publications (Plesken, 1981; Plesken & Hanrath,
1984) the term almost decomposable was used.

³ In view of Hahn (1995, p. 721), one might prefer the slightly more
precise term `Bravais ¯ock of matrix groups'. Though we speak of
Bravais equivalence, we do not use the term Bravais classes for Bravais
¯ocks to avoid the confusion with Z-classes of Bravais groups.

520 CRYSTALLOGRAPHIC ALGORITHMS AND TABLES



Clearly, F�G� is a real vector space, F> 0�G� is non-
empty, in fact F > 0�G� is an open cone in F�G�. The
Bravais group B�F� is a ®nite unimodular group and,
since F�G� � F�B�G��, one has B�B�G�� � B�G�.
Finally, if two ®nite unimodular groups are Z-equivalent,
their Bravais groups are also Z-equivalent. There is
more than one reason why Bravais groups are important
in the present context. They subdivide U fin�GLn�Z�� into
®nitely many Bravais ¯ocks. Representatives of the
Z-classes of Bravais groups are available in CARAT up
to degree 6. There are 1, 5, 14, 64,189, 841² classes of
degree 1, 2, 3, 4, 5, 6, respectively. It is conceivable that
the present version of CARAT could be extended by a
command to compute a set of representatives of the
Z-classes in any given Bravais ¯ock. Last, but not least,
the normalizers of the Bravais groups in GLn�Z� can be
computed via their action on the Bravais manifold. This
is the key to computing generators for the normalizer of
any ®nite unimodular group and for testing Z-equiva-
lence of ®nite unimodular groups. It is this ®nal point we
want to explain in some more detail now.

Remark 5. Let G � GLn�Z� be ®nite and B :� B�G� its
Bravais group. Denote the normalizers of G and B in
GLn�Z� by N�G� and N�B�, respectively.

(i) N�G� acts properly discontinuously on the Bravais
manifold F > 0�G� (cf. Example 1 and Remark 2), i.e. the
orbits are discrete subsets of the Bravais manifold and
the stabilizers are ®nite.

(ii) N�B� � fg 2 GLn�Z�jgtrF�B�g � F�B�g. [Note
that F�G� � F�B�.]

(iii) N�G� � N�B� with ®nite index, in fact N�G� is the
stabilizer N�B�G of G in the conjugation action of N�B�
on the set of subgroups of B.

(iv) The action of N�B� on F�B� is linear and the
Bravais group B is equal to the kernel of the action.

In x4, we shall see that the discontinuous action of
N�B� on the Bravais manifold not only enables one to
®nd generators for N�B� but also to decide Z-equiva-
lence for Bravais groups. The geometry behind our
procedure is of interest in itself, since it allows one to
®nd the densest lattice packings of spheres with the
given Bravais groups as an automorphism group. More
to the point for Z-equivalence of arbitrary ®nite uni-
modular groups, this is only a very ®nite problem by
Remark 5(iii), after everything is dealt with on the level
of Bravais groups.

For the analysis of crystal families in the next section,
we need a slight variation of the notion of Bravais
groups, which only differs from the one given above by

working with all bilinear forms instead of the symmetric
ones.

De®nition 3. (Plesken, 1977; Plesken & Hanrath, 1984).
Let G � GLn�Z� be a ®nite unimodular group.

(i) F I�G� :� fF 2 Rn�njgtrFg � F for all g 2 Gg is
called the enlarged space of (invariant) forms of G.

(ii) For any subset F of Rn�n containing at least
one symmetric positive-de®nite matrix, the group
BI�F � :� fg 2 GLn�Z�jgtrFg � F for all F 2 Fg is
called the strict Bravais group of F .

(iii) BI�G� :� BI�F I�G�� is called the strict Bravais
group³ of G.

(iv) Two ®nite subgroups of GLn�Z� belong to the
same strict Bravais ¯ock or are called strictly Bravais
equivalent, if their strict Bravais groups are Z-equiva-
lent.

Clearly, G � BI�G� � B�G� and BI�BI�G�� � BI�G�,
®nally B�BI�G�� � B�G� and BI�B�G�� � B�G�. For
instance,

BI

hD� 0

1

ÿ1

0

�Ei
�
D� 0

1

ÿ1

0

�E
is of order 4 with

F I

hD� 0

1

ÿ1

0

�Ei
�
n� a

b

ÿb

a

�
ja; b 2 R

o
;

whereas the Bravais group is of order 8. The de®nition
of strict Bravais ¯ocks is not so natural from a geometric
point of view, but very convenient from an algebraic
point of view, since G and BI�G� not only have the same
generalized space of invariant forms but also the
same (rational) enveloping algebra QG and therefore
also the same commuting algebra CQ�G� introduced
before Remark 3. The reason for this is that
CQ�G� � Fÿ1

0 F I�G� for any nonsingular F0 2 F I�G�.

2.4. A symbol for crystal families

When a ®nite unimodular group G is given, one will
®rst try to ®nd its crystal family, before one determines
its Bravais type or its Q-class, not only because this is a
coarser subdivision of ®nite unimodular groups than
either of the latter ones but also because crystal families
can be given a meaningful symbol, which carries a lot of
information about the structure. More important than
the symbol itself is the fact that there are primitive
symbols and a grammar by which the primitive symbols
are put together. The notation for the primitive symbols
and the symbols connecting the primitive symbols is a
matter of taste and background.

² The original publication (Plesken & Hanrath, 1984) lists 826 classes.
In preparing the inclusion tables for the Bravais groups, we found that
four Z-classes of Bravais groups were missing in the crystal family
3; 1, 1; 1 and nine Z-classes of Bravais groups missing in the crystal
family 3; 2-2; 1, one Z-class in 4-1; 2-2, and one Z class in 4-1; 1; 1.

³ The original publications (Plesken, 1977; Plesken & Hanrath, 1984)
use the slightly misleading term generalized Bravais group.
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De®nition 4. (Brown et al., 1977.) The classes of the
®nest equivalence relation on U fin�GLn�Z�� coarser than
both Q-equivalence and Bravais equivalence, are called
crystal families. I.e. two ®nite subgroups, G;H of
GLn�Z� belong to the same crystal family if there is a
sequence of groups Gi � GLn�Z� for i running from 0 to
some m, with G � G0, H � Gm and Gi is Q-equivalent
to Gi�1 for some of the i's and Bravais equivalent for the
remaining i's.

As an immediate consequence of the de®nition, one
sees the following: If two ®nite unimodular groups G
and H are in the same crystal family then there is a
t 2 GLn�Q� with tF�G�ttr � F�H�. By using some
elementary representation theory, one can assume that
G is in the same crystal family as a group H with
elements of the form

diag�h1; . . . ; h1|������{z������}
m1

; h2; . . . ; h2|������{z������}
m2

; . . . ; hk; . . . ; hk|������{z������}
mk

�;

where diag denotes a block-diagonal matrix and where
the matrix hi on the (block) diagonal runs through all
elements of a ®nite unimodular group Hi of degree
ni and where each hi occurs mi times. Of course,
m1n1 �m2n2 � . . .�mknk � n. The groups Hi can be
taken to be irreducible, i.e. all the sublattices of Zni�1

they leave invariant are of ®nite index in Zni�1. We leave
it as an easy exercise in representation theory to see that
the matrices in F�H� are of the shape

diag�F1;F2; . . . ;Fk�;
where the Fi are symmetric of degree mini computable
from Hi. The simplest case is when the multiplicity mi is
1. Then the condition is simply Fi 2 F�Hi�. In case
mi > 1, the matrix Fi can be understood as an mi �mi

`block matrix' with (block) entries f
�i�
st 2 Rni�ni of degree

ni with 1 � s; t � mi satisfying

f
�i�
st � f

�i�tr
ts for all s; t

and

htrf
�i�
st h � f

�i�
st for all h 2 Hi:

Since the off-diagonal blocks f
�i�
st (with s 6� t) need not

be symmetric, one is forced to consider enlarged spaces
of invariant forms and strict Bravais groups introduced
in De®nition 3. In particular, we see that the second
condition for the off-diagonal f

�i�
st really means

f
�i�
st 2 F I�Hi�. Aiming at a symbol for the crystal family,

one ®rst needs to specify the constituent groups Hi more
precisely. In case the multiplicity mi is one, one only
needs to specify in which irreducible crystal family Hi

lies. Hence, we need symbols for the irreducible crystal
families up to degree 6 (where irreducible of course
means that all groups in the crystal family are irre-
ducible). Next one needs to consider the slightly more
complicated (and rarer) case mi > 1. In this case, the
above analysis shows that one has to introduce strict

crystal families for irreducible groups. They are of
course build up from strict Bravais ¯ocks and Q-classes
in the same way as crystal families are from Bravais
¯ocks and Q-classes.

De®nition 5. (Plesken & Hanrath, 1984.)
(i) The symbols for the irreducible crystal families of

degree n are of the form n-s, where -s stands for some
symbol (possibly empty) to be chosen to distinguish the
irreducible families of degree n in case there is more
than one. (These are called primitive symbols of the ®rst
kind.) For 1 � n � 6, the following symbols have been
chosen: 1, 2-1 (square), 2-2 (hexagonal), 3 (cubic), 4-1
(hypercubic), 4-10 (octagonal), 4-2 (diisohexagonal
orthogonal), 4-20 (dodecagonal), 4-3 (icosahedral), 4-30

(decagonal), 5-1 (hypercubic), 5-2, 6-1 (hypercubic), 6-2
(triisohexagonal orthogonal), 6-20, 6-3, 6-30, 6-4, 6-40

(icosahedral). (The names are chosen such that n-i0

usually contains subgroups of groups in n-i. The families
containing the re¯ection groups of degree n isomorphic
to the symmetric group on n� 1 symbols are 1, 2-2, 3,
4-3, 5-2, 6-3. The names in brackets are from Brown et al.
(1977).

(ii) The symbols for the strict irreducible crystal
families of degree n are of the form n-s, where -s stands
for some symbol (possibly empty) to be chosen. (These
are called primitive symbols of the second kind.) For
1 � n � 3, the following symbols have been chosen: 1,
2-1 (square), 2-10, 2-2 (hexagonal), 2-20, 3 (cubic). (Again
the names are chosen such that n-i0 usually contains
subgroups of groups in n-i. The family 1 and the strict
family 1 are equal, the same for 3; the famly 2-1 is the
union of the strict families 2-1 and 2-10, also the family
2-2 is the union of the strict families 2-2 and 2-20.)

(iii) The symbol for the crystal family containing the
group H described above is

n1-s1; . . . ; n1-s1|�����������{z�����������}
m1

; n2-s2; . . . ; n2-s2|�����������{z�����������}
m2

; nk-sk; . . . ; nk-sk|�����������{z�����������}
mk

;

where ni-si is the primitive symbol of the (irreducible)
crystal family containing Hi in case mi � 1 or it is the
primitive symbol for the (irreducible) strict crystal
family containing Hi in case mi > 1.²

The reader might have noticed that everything
becomes much easier if one only talks about strict
crystal family. This notation differs slightly from the one
originally introduced but it has the merit of being easy to
input into a computer. It has also been suggested to use
? instead of semicolons (for obvious reasons); again the
mathematics is only in the grammar and in the existence
of the primitive symbols, not in the way the compounds
of the symbol are visualized. The only ambiguity left is
the order in which the symbols come. One can prove

² If one omits the -si parts of the symbol, one gets the decomposition
scheme of Plesken (1981) of the crystal family. This de®nes a coarser
equivalence relation than the concept of family.
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that two symbols as de®ned above refer to the same
crystal family if and only if they are obtained from each
other by permuting the k sections separated by semi-
colons. To make the symbol unique, one could work with
some lexicographic ordering according to some ordering
of the primitive symbols, but the program is robust
against such permutations. Table 2 shows the crystal
families up to dimension 4.

As an advertisement for group actions, the reader
who has missed explicit mentions of group actions in this
section is reminded that the complete analysis is based
on representation theory, i.e. the theory of linear group
actions.

2.5. Space groups

The ®nal issue concerns the space groups themselves.
Recall from Example 1(v) the notation for the
Euclidean group Eucln and its translation subgroup
T�Eucln�. An easy but essential fact is that T�Eucln� is a
normal subgroup of Eucln and that the conjugation
action of Eucln on T�Eucln� is (by the most obvious
map) similar to its action on Rn�1 via taking the linear
parts of the Euclidean motions. Now a space group
R is a subgroup of Eucln, whose translation sub-
group T�R� :� R \ T�Eucln� is a full lattice in
T�Eucln� � Rn�1, i.e. spanned (as a group) by n
R-linearly independent vectors. This forces the group of
linear parts of R to be a ®nite subgroup of On�R�, which
upon choice of a lattice basis can be conjugated under
GLn�R� into GLn�Z�. The resulting ®nite unimodular
group is unique up to conjugacy within GLn�Z�. Writing
the whole space group R now as matrices with respect to
suitable coordinates yields a group as follows.

De®nition 6. (Zassenhaus, 1948; Holt & Plesken, 1989.)
Let G � GLn�Z� be a ®nite unimodular group.

(i) A map v : G! Rn�1 is called a vector system,² if
v�gh� � v�g� � gv�h��mod Zn�1� for all g; h 2 G. The
vector systems form a group V�G;Rn�1� under addition.

Each vector system v 2 V�G;Rn�1� induces a 1-cocycle
�v : G! Rn�1=Zn�1 : g 7! v�g� � Zn�1 taking values in
Rn�1=Zn�1 and conversely each 1-cocyle with values in
this factor group is induced by a vector system. The set
of all these 1-cocycles forms a group under addition
denoted by C1�G;Rn�1=Zn�1�.

(ii) A vector system vt : G! Rn�1 : g 7! t ÿ gt for
some ®xed t 2 Rn�1 is called an inner vector system
and the induced 1-cocyle vt a coboundary. These
form subgroups I�G;Rn�1� of V�G;Rn�1� and
B1�G;Rn�1=Zn�1� of C1�G;Rn�1=Zn�1�, respectively.
The factor group H1�G;Rn�1=Zn�1� :�
C1�G;Rn�1=Zn�1�=B1�G;Rn�1=Zn�1� is called the ®rst
cohomology group of G with values in Rn�1=Zn�1 or, in
abuse of notation [since it is isomorphic to H2�G;Zn�1�],
the group of extensions of Zn�1 by G. H1�G;Rn�1=Zn�1�
is isomorphic to the factor group
V�G;Rn�1�=I�G;Rn�1�.

(iii) For any vector system v 2 V�G;Rn�1� call

R�G; v� :�
n� g

0

v�g� � t

1

�
jg 2 G; t 2 Zn�1

o
the space group associated with G and v.

Clearly, R�G; v� is a space group with translation
subgroup T�R�G; v�� consisting of all translations by
vectors in Zn�1. For v1; v2 2 V�G;Rn�1�, the two space
groups R�G; v1� and R�G; v2� are equal if and only if
v1 � v2, they are conjugate by a translation if and only if
v1 and v2 induce the same element in H1�G;Rn�1=Zn�1�.
From the practical point of view, it is important to note
that a vector system is essentially determinded by its
values on a generating set of the point group because
they determine the resulting space group uniquely. For
instance, the group

G :�
D
g1 :�

� 1

0

0

ÿ1

�
; g2 :�

�ÿ1

0

0

ÿ1

�E
allows a vector system v with

v�g1� �
� 1

2

0

�
and

Table 2. Crystal families up to dimension 4

Symbol 1 1, 1 1; 1 2-1 2-2 1, 1, 1 1, 1; 1 1; 1; 1 1; 2-1 1; 2-2 3
dim F�G� 1 3 2 1 1 6 4 3 2 2 1

Symbol 1, 1, 1, 1 1, 1, 1; 1 1, 1; 1, 1 1, 1; 1; 1 1; 1; 1; 1 1, 1; 2-1 1; 1; 2-1
dim F�G� 10 7 6 5 4 4 3

Symbol 1, 1; 2-2 1; 1; 2-2 1; 3 2-1, 2-1 2-1; 2-1 2-10, 2-10 2-1; 2-2
dim F�G� 4 3 2 3 2 4 2

Symbol 2-2, 2-2 2-2; 2-2 2-20, 2-20 4-1 4-10 4-2 4-20 4-3 4-30

dim F�G� 3 2 4 1 2 1 2 1 2

² Crystallographers might prefer the term `column system' but the
name vector system has a long mathematical tradition.
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v�g2� �
� 0

0

�
:

Then,

R�G; v� �
( 1 0 a

0 1 b
0 0 1

!
;

 1 0 1
2� a

0 1 b
0 0 1

!
;

 ÿ1 0 a

0 ÿ1 b
0 0 1

!
;

 ÿ1 0 1
2� a

0 1 b
0 0 1

!�����a; b 2 Z
)
:

Note that whereas v is not inner, 2v is an inner vector
system.

By the Bieberbach theorems, the translation
subgroup is not only a normal but a characteristic
subgroup of a space group, and therefore two space
groups are isomorphic if and only if they are conjugate
in the af®ne group Affn�R�. This immediately translates
into the following remark.

Remark 6. (Zassenhaus, 1948.) Let G � GLn�Z� be a
®nite unimodular group and denote its normalizer in
GLn�Z� by N�G�.

(i) N�G� acts on the group V�G;Rn�1� of all vector
systems of G, where n 2 N�G� maps v 2 V�G;Rn�1� to
nv de®ned by nv : g 7! nv�nÿ1gn� . Since this action
respects I�G;Rn�1�, it induces an action on
H1�G;Rn�1=Zn�1�.

(ii) Two v1; v2 2 V�G;Rn�1� gives rise to two
isomorphic space groups R�G; v1� and R�G; v2� if and
only if v1 and v2 represent elements in
H1�G;Rn�1=Zn�1�, which lie in the same orbit under the
action of N�G�.

CARAT also provides facilities to transform a
subgroup of R�G; v� of ®nite index into the form
R�H;w� for a suitable ®nite unimodular group H and a
suitable vector system w for H. (Actually all the vector
systems CARAT provides take already values in
jGjÿ1Zn�1=Zn�1 rather than Rn�1=Zn�1.) It can test two
space groups R�G; v� and R�H;w� for isomorphism,
Z-equivalence, Q-equivalence, Bravais equivalence and
it can determine the family symbols.

3. Basic tasks

3.1. Types of problems and general philosophy

This chapter will enumerate the tasks CARAT is
designed to deal with. It will also give the user an idea
what is involved and what is easy, dif®cult or time
consuming. The actual algorithms will be discussed in x4.

Not everything that is discussed here is realized already;
where it is not, we say so. CARAT is designed to have as
little overlap as possible with existing group-theoretical
packages like GAP or MAGMA (cf. SchoÈ nert, 1993;
Bosma & Cannon, 1996) (for information on how to
obtain these packages, refer to the Internet sites given in
the reference list) on the one hand, but more impor-
tantly it should solve most if not all common tasks in the
realm of crystallographic groups without accessing other
systems. Moreover, the user should not be forced to
learn a new language but only be able to work in a Unix
environment: the user keeps his own ®les, which are
basically of two types. These ®les can be used as input
for the programs of the package. The programs produce
output ®les in such a way that they are either already in
one of the prescribed input formats or can easily be
turned into these formats.

There are two main types of problems CARAT is
designed to deal with and a further type for which some
development is in progress or access to other packages
becomes necessary: enumeration; recognition and
comparison; general investigation.

Some enumerative tasks have been solved within
CARAT by providing a list of representatives, i.e.
CARAT has tables that can be accessed via a program
call. Obviously, a list of all af®ne classes or even
Z-classes is out of the question because it is too long. But
CARAT can provide key lists from which by speci®ca-
tion of suitable parameters it might be able to use its
programs to compute representatives of the groups in
the speci®ed realm. The key lists that are already
available are the following: Bravais groups up to degree
6, inclusions of Bravais manifolds and Bravais groups.
The key lists that one could further wish to have are:
Q-classes up to degree 6; information about Bravais
minimal subgroups of Bravais groups. All other infor-
mation should be computable from these with the
programs in CARAT. One should however be aware
that enumeration gets less and less interesting the more
classes there are in the speci®ed realm. It can also
become physically impossible, e.g. there are Z-classes of
space groups of degree 6 splitting up into more than
1 million af®ne classes. In the case of af®ne classes in a
Z-class, the program can still give the number of classes
without enumerating them. Here is a list of enumerative
tasks that will be commented upon below:

(a) splitting a Z-class in af®ne classes;
(b) splitting a Q-class into Z-classes;
(c) splitting a Bravais ¯ock into Z-classes;
(d) splitting a crystal family into a Bravais ¯ocks;
(e) splitting a crystal family into Q-classes;
(f ) enumerating inclusions between Bravais groups.
In case one has a crystallographic group and wants to

compare it with another one or ®nd an equivalent one in
a list that CARAT supplies or the user has made himself,
various programs are available for computing relevant
invariants or performing comparisons such as testing
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af®ne, Z-, Q- or Bravais equivalence. In part, these
programs are also used for the enumerative tasks above.
An important aspect of this is that the various equiva-
lence relations do a lot towards a parametrization of the
groups, in the sense that each group gets a name that is
as meaningful as possible, i.e. enables the user to read off
the family, the Bravais ¯ock etc. to which the group
belongs. Beyond this there is the following observation:
Say CARAT has a program to enumerate representa-
tives of certain classes starting out for the certain data it
has stored. For the user, it is as meaningful to speak of
the nth representative as it would be for him to talk
about the nth group in list k of a certain book, because
each time the program generates these representatives
from the same data by the same algorithm its nth object
will be the same as before. Here is a list of the tasks
concerning recognition and comparison:

(a) deciding af®ne equialence;
(b) deciding Z-equivalence;
(c) deciding Q-equivalence;
(d) deciding Bravais equivalence;
(e) computing the family symbol.
Coming to the last point, which is rather vague at

this stage, one could think of computing interesting
geometric or group-theoretical invariants of the object
under inspection. For some of these, one will have to
use other packages; many programs are under devel-
opment like computing fundamental domains,
computing orbits on certain objects, ®nding subgroup
relations etc.

3.2. Enumeration

3.2.1. Splitting a Z-class into af®ne classes. The basic
structure behind the problem is discussed in De®nition 6
and Remark 6: Suppose the Z-class is given by a
representative G � GLn�Z�. One needs to compute the
orbits of the normalizer NGLn�Z��G� on the cohomology
group H1�G;Rn�1=Zn�1� by the Zassenhaus algorithm.
One is given a set of vector systems vi 2 V�G;Rn�1�
such that the representatives of the isomorphism classes
are given by the R�G; vi�. The ®rst vector system v1 is the
0-vector system representing the symmorphic (or split)
space group.

If G is given by generating matrices, one needs a
presentation of G in terms of these generators, i.e.
de®ning relations, to compute H1�G;Rn�1=Zn�1�. There
are two programs available to compute such a presen-
tation, one for soluble groups G and one for arbitrary
groups G. The later one computes a fundamental
domain and is then based on PoincareÂ 's method of
neighbouring transformations for which one gets
de®ning relators by walking around the edges of the
fundamental domain of co-dimension two. The
complexity of this procedure depends on the order of G.
Once the presentation is available, the cohomology
group is quickly computed. There are cases where one

wants to do this ®rst before one computes the normal-
izer, because H1�G;Rn�1=Zn�1�might be of order 1 or 2,
in which case the normalizer has the same number of
orbits. In all other cases, one usually needs generators
for the normalizer NGLn�Z��G�, which are computed by
Opgenorth's algorithm described in x4 (Opgenorth,
1997). The cost of this mainly depends on the dimension
of the space F�G� of forms of G, on the index of
NGLn�Z��G� in NGLn�Z��B�G��, and to a lesser extent on
the orders of G and B�G�, in case G 6� B�G�. This is so
since the normalizer of the Bravais group B�G� is
computed ®rst, cf. Remark 5. Again, once the normal-
izer is given, the computation of the orbit representa-
tives in H1�G;Rn�1=Zn�1� does not take too long, unless
the cohomology group is very big [like in the case of the
group of all diagonal matrices in GL6�Z�, where the
cohomology group has order 230 falling into 1 540 944
orbits]. In such a case, one can use the same program to
compute the number of orbits ®rst. This is based on the
Burnside±Cauchy lemma, that the average number of
®xed points of the (acting) group elements is equal to
the number of orbits.

3.2.2. Splitting a Q-class into Z-classes. The method
proceeds in two steps:

The basic structure behind this problem was
described in Remark 2: Say a ®nite subgroup G of
GLn�Z� [or GLn�Q� for that matter] is given. Then one
needs to compute a set of representatives of the orbits in
the F�G� :� FixG�Zn� of G-invariant (full) lattice in
Qn�1 under the action of the rational normalizer
NGLn�Q��G�. This might be a theoretically satisfying
description of the problem, but its algorithmic solution is
more involved, since both Z�G� and NGLn�Q��G� are too
complicated to be `computed' ®rst and to get the
orbits afterwards. Certainly, one needs a means to
compute lattices, which is provided by the `centering'
algorithm described in x4 and is not too expensive (if
one knows what one is looking for). Secondly, one
needs a means to decide whether two lattices give rise
to Z-equivalent groups. This is also available by a
slight extension of the method computing the integral
normalizer and will be discussed below and in the next
section. In the method described below, which is based
on Remark 3, the integral normalizers are also
needed. Finally, one needs a method to decide when
one has found enough lattices. To outline the method,
denote the subgroup of GLn�Z� obtained from the
action of G on some lattice L 2 Z�G� with respect to
some chosen Z-basis of L by G�L�.

Step 1: Compute representatives of the NGLn�Q��G�
orbits on Zh:d:�G� as follows:

start with L1 � �s
i�1eiZ

n�1 (cf. Remark 3);
compute generators for the normalizer of G�L1� in

GLn�Z�;
compute the maximal G-sublattices of L1 in Zh:d:�G�

which are of p-power index in L1, where p is a prime
number dividing the order jGj of G;
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compute orbit representatives of the NGLn�Z��G�L1��
orbits on the set of these maximal sublattices of
L1;

check which of the representatives L give rise to a
group G�L� which is Z-equivalent to an earlier obtained
G�Li�, discard these, add the L's giving rise to new
G�L�'s to the list of lattices Li to be treated like L1.

Step 2: For each homogeneously decomposable lattice
Li 2 Zh:d:�G� obtained in step 1 proceed as follows:

compute the (®nite) set �ÿ1�Li� of G-sublattices X of
Li satisfying �s

j�1eiX � Li, cf. Remark 3. This compu-
tation is done `layer by layer' starting with the maximal
sublattices of Li followed by the second maximal ones
etc.;

compute a set Ri of representatives of the
NGLn�Z��G�Li�� orbits on the set �ÿ1�Li� of sublattices of
Li previously determined. The G�L� with L 2 [Ri form
a set of representatives of the Z-classes in the Q-class of
G. [Note that from Remark 3 the normalizers of the
G�L� can be obtained as the stabilizers of the
NGLn�Z��G�Li�� from step 1 of the L's in Ri.]

This method works for all cases up to degree 6. Its
complexity depends on the dimension of F�G� (for the
normalizer computations) and on the class number
jNGLn�Q��G�\Z�G�j. For instance, the Q-class of the
group

hdiag�1;ÿ1; 1;ÿ1; 1; 1�; diag�1;ÿ1;ÿ1; 1;ÿ1; 1�;
diag�1; 1;ÿ1; 1; 1;ÿ1�i

of order 8 splits into 325 Z-classes. (These Z-classes split
into 21 621 af®ne classes.)

3.2.3. Splitting a Bravais ¯ock into Z-classes. Here one
wants to enumerate all subgroups G of a Bravais group
B with B�G� � B up to Z-equivalence. Note that two
such groups G are Z-equivalent if and only if they are
conjugate under NGLn�Z��B�. Since the subgroups G with
B�G� � B only form a small fraction of all subgroups of
B, we propose to solve this problem by listing the
Bravais minimal subgroups G of B up to NGLn�Z��B�
conjugacy in a table and to compute the others from this
table. Of course, G � B is called Bravais minimal if
B�G� � B and B�H� 6� B for all proper subgroups
H <G of G. Note that if G is Bravais minimal and H is
rationally equivalent to G then H is also Bravais
minimal [in its Bravais group B�H�, which need not be
Q-equivalent to B�G�]. Therefore, the tables of the
Bravais minimal subgroups of the Bravais groups, which
at the moment are not yet realized in CARAT, could
best be established as a side project of computing tables
of the Q-classes, cf. x3.2.5 below. In the description of
the method how to ®nd the Z-classes in a Bravais ¯ock,
we pretend that a list for each Bravais group B to be
investigated, a list of the permutation representations on
the cosets of the Bravais minimal subgroups [up to
NGLn�Z��B� action], is available. Then one could proceed
in two steps as follows:

Step 1: Find the subgroups G of B with B�G� � B up
to conjugacy in B:

Starting with the permutation representations of B on
the cosets of the Bravais minimal subgroups G of B,
compute the permutation representations of B on the
cosets of any intermediate group H with G � H � B.
Computing the permutation representations on the
minimal blocks of any permutation representation gives
Example 1(vi). B-conjugacy is tested by using the well
known fact that two subgroups H of B are conjugate in B
if and only if the permutation representations of B on
the cosets of the subgroups H are equivalent. In parti-
cular, since the actions will be described as permutations
on some ®xed generating set of B, one has equivalence if
the degrees are equal and the stabilizer of a point in the
®rst action also stabilizes a point in the second action.
(Note that the desired subgroups are given as these
stabilizers.)

Step 2: decide conjugacy in NGLn�Z��B�:
Here we rely on the decision procedures for

Z-equivalence to be described below (cf. x3.3.2).
Of course, in practice one will mix the two steps to

minimize the number of redundant groups one
computes. The costs of the procedure depend to some
extent on the maximal index of the Bravais minimal
subgroups of B in B and on the number of Z-classes in
the Bravais ¯ock.

3.2.4. Splitting a crystal family into Bravais ¯ocks.
Computing all Bravais groups in a crystal family is
usually complex and time consuming and the result
does not take too much space to formulate. Therefore,
this problem is solved in CARAT by tables that are
based on existing classi®cations of Bravais groups in
the literature (up to degree 6) (cf. Brown et al., 1977;
Plesken, 1981; Plesken & Hanrath, 1984). Recall from
De®nition 5 that each crystal family can be addressed
by a symbol. The most readily available Bravais
groups B in a given crystal family are the homo-
geneously decomposable ones, i.e. those for which the
natural lattice L :� Zn�1 splits into a direct sum
L � �s

i�1eiL, where e1; . . . ; es are the primitive idem-
potents of the center of the enveloping algebra QB, cf.
Remark 3. (Of course, s � 1 is admitted.) Concerning
their group-theoretic structure, homogeneously decom-
posable Bravais groups are direct products of Bravais
groups of lower degree, in case the number s of homo-
geneous components is bigger than 1. More interest-
ingly, any Bravais group B can be assigned a
homogeneously decomposable Bravais group in the
same crystal family: Let L :� Zn�1 be the natural lattice
of B and let L0 :� �s

i�1L, where e1; . . . ; es are the
primitive idempotents of the center of the enveloping
algebra QB as above. Clearly, B acts on L0, i.e.
L0 2 Z�B�. Let B�L0� be the subgroup of GLn�Z�
obtained from the action of B on L0 with respect to some
lattice basis of L0. Then the Bravais group B�B�L0�� of
B�L0� is the associated homogeneously decomposable
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Bravais group of B, well de®ned up to Z-equivalence (cf.
Plesken, 1981; Plesken & Hanrath, 1984).

When one speci®es a symbol for a crystal family,
CARAT will ®rst answer with the number of Z-classes of
homogeneously decomposable Bravais groups in this
family and the number of Z-classes of Bravais groups
associated with each of the homogeneously decom-
posable Bravais group. If one speci®es a Bravais group,
one gets generators, a basis of the form space and
generators for the normalizer in GLn�Z�. If the Bravais
group is homogeneously decomposable, one also gets
bases for the lattices of the other Bravais groups which
are associated with the speci®ed homogeneously
decomposable Bravais group.

3.2.5. Splitting a crystal family into Q-classes.
Computing representatives of the Q-classes in a crystal
family is not necessarily a problem that can be solved
quickly, though there are powerful general-purpose
subgroup routines in packages like GAP and MAGMA
available. But then Q-equivalence has to be tested
afterwards. Therefore, we suggest tabulating repre-
sentatives of the Q-classes for each crystal family up to
degree 6 (which might be just about feasible). These
tables have not yet been computed. For the Q-equiva-
lence tests, we refer to x3.3.3.

3.2.6. Enumerating inclusions between Bravais groups.
It is remarkable to note that there are only ®nitely many
pairs �B1;B2� of Bravais groups with B1 � B2 up to
conjugation under GLn�Z�. This is an immediate
consequence of the Jordan±Zassenhaus theorem. To
enumerate representatives is more dif®cult. Since the
computations are time consuming, CARAT again goes
for tables. These tables can answer the following ques-
tions for a given Bravais group B:

How many NGLn�Z��B�-conjugacy classes of Bravais
groups H with H � B are there?

How many Bravais groups H with H � B are there?
How many NGLn�Z��B�-conjugacy classes of Bravais

groups H with B � H are there?
List representatives of the NGLn�Z��B�-conjugacy

classes of Bravais groups H with H � B.
List representatives of the NGLn�Z��B�-conjugacy

classes of Bravais groups H with B � H.
Since the program only runs through tables one gets

answers reasonably quickly.

3.3. Recognition and comparison

3.3.1. Deciding af®ne equivalence. The basic structure
was explained in x3.2.1 and the basic idea is that of the
standard representative: We may assume that the groups
are already in the form that they yield the same point
group G on the same generators and that generators for
the normalizer NGLn�Z��G� are given. The elements of
H1�G;Rn�1=Zn�1� are given some lexicographic
ordering. Then one can compute for the vector systems
of both groups the lexicographic ®rst element in their

orbits under the normalizer NGLn�Z��G� acting on
H1�G;Rn�1=Zn�1�.

There are some problems with ®rst transforming the
groups to the desired shape such that the comparison
can be made. For these, one can usually employ the
Z-equivalence routine in x3.3.2. There is one situation
when more work has to be done: if a space group R is
given as a subgroup of another space group. In this case,
one ®rst has to ®nd a presentation of the group R of
linear parts of R on the linear parts of the generating set
by which R is given. Inserting the generators of R in the
de®ning relators yields a generating set of the transla-
tion subgroup T�R� of R as modulus for R. This gener-
ating set is then turned into a Z-basis for T�R� from
where it is a routine application of the Z-equivalence
routine to transform R into the desired shape.

3.3.2. Deciding Z-equivalence. We may assume that
the two ®nite unimodular groups to be checked for
Z-equivalence are already checked for Bravais equiva-
lence, cf. x3.3.4, and are subgroups of the same Bravais
group B. Then they are Z-equivalent if and only if they
are conjugate under the normalizer NGLn�Z��B�, which
can be checked by an orbit calculation since the orbit is
®nite.

3.3.3. Deciding Q-equivalence. Suppose two ®nite
subgroups G, H of GLn�Q� are given by generators. The
®rst problem is to ®nd generators for H that might
correspond to the given generators of G under the
conjugation by some matrix of GLn�Q�. The basic idea,
which is not yet implemented in the present version
of CARAT, is to view the enveloping Z-order
ZG :� �P agg 2 Qn�njag 2 Z for all g 2 G

	
as a Z-lat-

tice equipped with bilinear forms induced from traces
and with other structures resulting from the origin of the
lattice from a group. As a result, one has to check only
very few isometries � from ZG to ZH respecting all these
structures, whether they are induced by a rational
conjugation. This checking essentially amounts to
solving the Q-linear system of equations Xg � ��g�X,
where g runs through the generating set of G and
X 2 Qn�n is unknown. Details are given in x4.

At the moment, one is forced to check Q-equivalence
via splitting into Z-classes and checking Z-equivalence.

3.3.4. Deciding Bravais equivalence. We may assume
that the two groups G and H to be compared for Bravais
equivalence lie already in the same crystal family, cf.
x3.3.5. The next move is to compute some rather cheap
invariants, e.g. elementary divisors for a trace pairing of
F�G� \ Zn�n with F�Gtr� \ Zn�n. If all these invariants
agree, a more serious computation is performed, which
computes the G-perfect forms in F�G� and the corre-
sponding Voronoi domains in F�Gtr�, cf. De®nition 8,
from which one can easily compute generators for the
normalizer NGLn�Z��G�. Comparing all perfect forms for
G with one perfect form for H yields the desired
equivalence test and transforms H under a unimodular
matrix into B�G� in case both groups lie in the same
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Bravais ¯ock. The complexity of the method mainly
depends on the dimension of F�G�. Details are given in
x4.

3.3.5. Computing the family symbol. The basic idea is
to compute the homogeneously decomposable Bravais
group associated with the given ®nite unimodular group
G and compare it with the list of homogeneously
decomposable Bravais groups. The main step is to
compute the primitive idempotents e1; . . . ; es of the
center of the enveloping algebra QG, cf. Remark 3. This
amounts to a standard problem of linear algebra, namely
to factorize the minimum polynomial of one or some
elements in this center. The present implementation of
CARAT makes essential use of the assumption that the
degree of the groups is at most 6.

4. Main algorithms

4.1. The three basic algorithms

Of course, there are a couple of standard group-
theoretical algorithms, like computing an orbit of a
group given by a ®nite generating set acting on some
®nite set or computing generators for a stabilizer or
computing a Z-basis of a lattice given by some gener-
ating set etc. These we will not discuss although the
performance of the more speci®c algorithms will also
depend on the quality of the implementation of these
frequently used procedures. In this section, we want to
comment on the three working horses of the whole
package, namely on the lattice automorphism algorithm,
which is closely connected with the lattice isometry
algorithms, on the sublattice (or centering) algorithm,
and ®nally on the more classical Zassenhaus algorithm
to compute H1. It will be the lattice automorphism
algorithm that will be the essential ingredient from the
algorithmic side for Opgenorth's normalizer algorithm
to be described later on. Fig. 1 shows which (major)
algorithm makes use of which other (major) algorithm.

Most interrelations in the diagram have already been
explained in x3. The most classical part of the diagram is
the right-hand side: The two boxes are conventially
taken together and called the Zassenhaus algorithm. In
Zassenhaus (1948), everything is explained in detail, cf.
also Holt & Plesken (1989) for a more recent account.
We do not comment here on the algorithms we use to get
a presentation for the point group, which is needed for
the H1-computation.

Secondly, a rough description of the sublattices (or
centering) algorithm might be in place. It dates back to
Plesken (1974) and has been used in the determination
of maximal ®nite subgroups of GLn�Z� for n � 10, cf.
Plesken & Pohst (1977, 1980) and Souvignier (1994), of
the Bravais groups up to degree 6, cf. Plesken (1981) and
Plesken & Hanrath (1984), and of the maximal ®nite
subgroups of GLn�Q� for n � 31, cf. Plesken (1991),
Nebe & Plesken (1995) and Nebe (1995, 1996a,b). The

algorithm starts with a ®nite unimodular group
G � GLn�Z� and starts to compute the G-sublattices of
the natural G-lattice L0 � Zn�1 layer by layer after some
preprocessing. In the preprocessing phase, the action of
G on L is taken modulo a prime p. (For the purposes of
this paper, p divides jGj.) The irreducible consituents of
the resulting representation G! GLn�Z=pZ� are then
computed or, in the language of linear actions, the
G-composition factors of L0=pL0 are determined. Note
that any G-sublattice of ®nite index of L0 would yield
isomorphic composition factors.

After the preprocessing, the algorithm starts
computing sublattices. It keeps a list of certain (to be
explained below) lattices, which usually starts with L0.
For each G-lattice L in this list, it computes the maximal
G-sublattices X of L with index jL : Xj dividing jGjl for
some l 2 N as follows: Each such X is the kernel of a
surjective G-module homomorphism (additive G-map)
' : L! S, where S is one of the composition factors
computed in the preprocessing phase (i.e. a simple
Z=pZG-module). Note that computing such a homo-
morphism ' and computing the kernel of ' both amount
to solving linear equations over the residue class
®eld Z=pZ. In the ®rst case, these equations are
' : �L�g� � �S�g�' with g running through a set of
generators of G. Here, ' represents the matrix of the
(unknown) ' and �L is the matrix representation for the
action of G on L=pL and �S for the action on S. That
the computation of the kernel of ' amounts to solving
linear equations is clear. However, to get a good lattice
basis for the kernel, one usually invokes the LLL
algorithm or some other reduction routine. (This is
essential to keep numbers small.)

A word about which lattices are kept and which are
discarded ought to be said. This greatly depends on the
circumstances. At the minimum, one checks whether a

Fig. 1. Diagram to show main algorithms.
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newly found lattice is in fact identical with an earlier
®nd. One also discards multiples of earlier found lattices.
But in the context of splitting Q-classes into Z-classes,
two other conditions also play a role which were
described in x3.2.2, and which can be formulated in
terms of the primitive idempotents of the centre of QG.

The third basic algorithm computes lattice auto-
morphism and isometries. The algorithm was ®rst
designed by Plesken & Pohst (1985) and much re®ned
and improved by Plesken & Souvignier (1997). The
present implementation by B. Souvignier is very
powerful indeed, e.g. it computes generators for the
automorphism group of the 24-dimensional Leech
lattice in less than 20 min [the lattice has 196 560 vectors
of shortest length and the automorphism group, which is
the covering group of the Conway group Co has order
22239547211� 13� 23, cf. Conway & Sloane (1988)].
The program has been used for the classi®cation of the
maximal ®nite subgroups of GLn�Q� for n � 31, cf.
above and various other projects.

We ®rst describe the automorphism version. It starts
from a set of integral matrices F1; F2; . . . ;Fk 2 Zn�n,
where F1 has to be symmetric and positive de®nite. It
then computes generators for the strict Bravais group
B :� BI�fF1; . . . ; Fkg� :� fg 2 GLn�Z�jgtrFig � Fi for
i � 1; . . . ; kg as follows:

Let m be the maximum of the diagonal entries of F1.
Then the ®nite set C :� fx 2 Zn�1jxtrF1x � mg is
computed. Note that g 2 B implies gei 2 C, where
e1; . . . ; en is the standard basis of Zn�1, i.e. the candi-
dates for the columns of g lie in C. Now there follows a
rather sophisticated backtrack search for n-tuples
g � �c1; . . . ; cn� 2 Cn � Zn�n satisfying gtrFig � Fi for
i � 1; . . . ; k. For an individual g, the search tries to
complete k-tuples already have the correct scalar
products to n-tuples in a systematic way, and that tries to
predict as early as possible whether or not such a
completion exists. The whole search is set up in such a
way that one ends up with rather few generators of B.

For the isometry version, one starts with two sets
of integral matrices F1; F2; . . . ;Fk 2 Zn�n and
F 01;F 02; . . . ;F 0k 2 Zn�n, where F1 and F 01 have to be
symmetric and positive de®nite. It then decides whether
there exists a g 2 GLn�Z� with gtrFig � F 0i for
i � 1; . . . ; k. In case of existence, such a g is given. The
algorithm proceeds by ®rst computing generators for
Bi�fF1; . . . ;Fkg� and uses them to shorten the backtrack
search for g, which is similar to the automorphism
version.

From this very rough description, one can see that it is
essential to have the set C as small as possible, i.e. to
keep the maximum m of the diagonal entries of F1 as
small as possible. This can usually be achieved by ®nding
some sort of reduced basis for Zn�1 with respect to the
scalar product induced by F1. The algorithm can be used
to compute Bravais groups, and at least its idea and basic
ingredients can be used for testing Q-equivalence, as we

shall sketch next. In x4.2, we shall see how it is used for
computing normalizers and test Z-equivalence.

An outline on how one can decide whether two ®nite
subgroups G, H of GLn�Q� are rationally equivalent was
given in x3.3.3. In the light of the isometry routine
described above, this can now be better understood:
One has at least two scalar products on the enveloping
Z-order ZG, namely

� : ZG� ZG! Z :

� P
g2G

agg;
P
h2G

bhh

�
7!P

g;h

agbhÿ1 tr�ghÿ1�

and

 : ZG� ZG! Z :

� P
g2G

agg;
P
h2G

bhh

�
7!P

g;h

agbhtr�gh�:

Now, there are still a few more simpli®cations: The set
C in the automorphism program can be chosen to be G
itself or G and H for the isometry program. Further-
more, one knows that In must be mapped onto In and
minimal polynomials and orders of elements have to be
preserved. Sometimes, one can also use idempotents of
the center of the rational enveloping algebra to form
more scalar products to be preserved. How to proceed
from here was discussed in x3.

4.2. The normalizer algorithm

The algorithm is due to Opgenorth (1997), which is
his second normalizer algorithm, cf. Opgenorth (1996)
for the ®rst one. It was explained in xx3.2.2 and 3.3.2 and
Remark 5 that the essential part of the computation of
the normalizer NGLn�Z��G� of a ®nite unimodular group
G of degree n consists in computing the normalizer of its
Bravais group B�G�. Also, testing Z-equivalence reduces
essentially to this task, namely to checking Bravais
equivalence, i.e. Z-equivalence for the Bravais groups.
Therefore, we shall assume now that G � B�G� is a
Bravais group and also for the other group H, which has
to be checked to be Z-equivalent to G, we assume
H � B�H�. To understand the basic idea behind
Opgenorth's algorithms, assume for a moment that both
G and H have a one-dimensional space of invariant
forms. Then each of these spaces has a canonical basis: It
consists of the unique integral positive-de®nite form
F 2 F�G�, respectively, in F�H�, where the greatest
common divisor of entries is 1. Hence the normalizer
®xes this form, i.e. is equal to the Bravais group, and for
the Z-equivalence test this means that one only has to
compute an isometry. In general, the form space will not
have such special form, not even a unique orbit of
certain forms under the normalizer, which are in some
sense special. But the G-perfect forms to be de®ned
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and used below come close to this desirable property:
There are only ®nitely many up to normalizer action
in the form space, cf. Jaquet-Chiffelle (1995) and
Opgenorth (1996, 1997). We now need some
preparation from the classical theory of perfect forms
and the Voronoi algorithm, cf. Martinet (1996).

De®nition 7. Let F 2 Rn�n
sym; > 0.

(i) m�F� :� minfxtrFxj0 6� x 2 Zn�1g is called the
minimum of F.

(ii) Mv�F� :� fx 2 Zn�1jxtrFx � m�F�g is called the
set of minimum vectors of F.

(iii) Mf �F� :� fxxtrjx 2 Mv�F�g is called the associated
set of forms of Mv�F�.

(iv) V�F� :� �Pf2Mf �F� af f jaf 2 R; af � 0
	 \ Rn�n

sym; > 0

is called the Voronoi domain of F.
(v) F is called perfect if V�F� has non-empty interior in

Rn�n
sym or, equivalently, if Mf �F� contains n�n� 1�=2

linearly independent matrices.

Though it is not relevant in our context, we mention
Voronoi's well known theorem from the geometry of
numbers that F gives rise to a local maximum for the
density of lattice sphere packings if and only if F is
perfect and eutactic, cf. Martinet (1996). What is more
relevant for us is the elementary fact that the action of
GLn�Z� on Rn�n

sym; > 0 described in Example 1(ii) trans-
forms perfect forms in perfect forms with the same
minimum. Moreover, Voronoi's theorem says that the
number of orbits on the perfect forms of degree n with
minimum 1, say, is ®nite. Here is Voronoi's idea to
construct a ®rst perfect form from a given form:

Remark 7.
(i) tr : Rn�n

sym � Rn�n
sym ! R : �F1;F2�7!trace�F1�F2� is

a nondegenerate symmetric bilinear form on Rn�n
sym

satisfying tr�F; xxtr� � xtrFx for all F 2 Rn�n
sym and all

x 2 Rn�1, in particular for all F 2 Rn�n
sym; > 0 and all

x 2 Mv�F�.
(ii) If F 2 Rn�n

sym;>0 is not perfect, for any non-zero
Y 2 Rn�n

sym trace orthogonal to Mf �F� there exists a � 2 R
with F � �Y positive de®nite, Mf �F � �Y� containing
Mf �F� properly with more linearly independent
matrices.

Clearly, iterating (ii) leads to a perfect form. Two
perfect forms F1 and F2 in Rn�n

sym; > 0 are called neighbors
if their Voronoi domains V�F1� and V�F2� share a face of
co-dimension 1. Such a face spans a hyperplane of the
form H�Y� :� fX 2 Rn�n

sym jtr�X;Y� � 0g for some non-
zero Y 2 Rn�n

sym . The Y's describing co-dimension 1 faces
of the Voronoi domain of F1 are called directions of F1 if
V�F1� � fX 2 Rn�n

sym jtr�X;Y� � 0g and can easily be
found by omitting vectors from the maximal linearly
independent subsets of Mf �F� and computing the
trace orthogonal spaces. In particular, each perfect
F 2 Rn�n

sym;>0 has only ®nitely many neighbors. Moreover,
the neighboring relation is respected by the GLn�Z�
action.

We are now ready to discuss G-perfect forms.
Together with the ®nite subgroup G of GLn�Z�, we have
to consider the transposed group Gtr consisting of the
transposed matrices of G.

Remark 8.
(i) �G : Rn�n

sym ! F�Gtr� : F 7! �1=jGj�Pg2G gFgtr is
a linear projection of Rn�n

sym; > 0 onto F > 0�Gtr�.
(ii) trG : F�G� � F�Gtr� ! R : �F1;F2� 7! tr�F1;F2�

is a nondegenerate bilinear pairing satisfying
tr�F; �G�xxtr�� � xtrFx for all F 2 F > 0�G� and all
x 2 Mv�F�.

This easily veri®ed remark suggests the following
de®nition.

De®nition 8. Let F 2 F > 0�G�.
(i) MG

f �F� :� �G�Mf �F��.
(ii) VG�F� :�

�P
f2MG

f
�F� af f jaf 2 R; af � 0

	\
Rn�n

sym; > 0 � �G�V�F�� is called the G Voronoi domain
of F.

(iii) F is called G-perfect, if VG�F� has non-empty
interior in F�Gtr� or equivalently if MG

f �F� contains
dim�F�G�� linearly independent matrices.

Again, the Voronoi construction for producing
G-perfect forms works and one can de®ne the
corresponding neighboring relation for G-perfect
forms (cf. BergeÂ & Martinet, 1992; BergeÂ et al., 1992;
Opgenorth, 1997). The role of GLn�Z� is taken over
by NGLn�Z��G� and one has only ®nitely many orbits
on G-perfect forms (cf. Jaquet-Chiffelle, 1995;
Opgenorth, 1997). However, the G-Voronoi domain of
a G-perfect form F 2 F�G� may have co-dimension 1
faces which are not faces of another G-Voronoi domain
but may lie on the boundary of F > 0�Gtr� in F�Gtr�. The
directions of the G-Voronoi domain of a G-perfect
form F are given by those Y 2 F�G� for
which HG�Y� :� fX 2 F�Gtr�jtrG�Y;X� � 0g spans
a co-dimension 1 face of VG�F� and
VG�F� � fX 2 F�Gtr�jtrG�Y;X� � 0g. A direction is
only determined by a co-dimension 1 face of VG�F� up to
positive multiples. There are various ways of making
them unique, for instance by insisting that they lie in
Zn�n and that their entries have 1 as greatest common
divisor. Denote the set of (in this sense) normalized
directions of F by DG�F�. Since G � B�G� and since
VG�F� together with F spans F�G�, we clearly have the
following characterization of normalizing elements of G,
based on Remark 5.

Remark 9. Let G � B�G� � GLn�Z� be ®nite,
n 2 GLn�Z�, and F 2 F�G� a G-perfect form. Then
n 2 NGLn�Z��G� if and only if ntrFn 2 F�G�, ntrFn is
G-perfect, and ntrDG�F�n � DG�ntrFn�.

One can clearly see now how the lattice auto-
morphism and isometry routine can be used to ®nd
elements in the normalizer. Here are the essential steps
of Opgenorth's algorithm producing a set of generators
of the normalizer.
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Set N :� NGLn�Z��G�, assume G � B�G� � GLn�Z� is
®nite. All G-perfect forms F coming up are to be
normalized to have m�F� � 1.

Step 1: Compute a G-perfect form F0 in F >0�G�.
Step 2: Starting with F0, compute iterated neighbors to

®nd a maximal set P of G-perfect forms, no two of which
are in the same N orbit by using Remark 9, any two of
which are connected by a chain of G-neighbors (i.e. a
connected subgraph of the graph of G-perfect forms,
whose vertices form a set of representatives of the N
orbits of the G-perfect forms).

Step 3: For any F 2 P, compute a generating set of the
stabilizer NF of F in N (using the isometry routine and
Remark 9).

Step 4: For any G-perfect F 2 F�G�, which is
G-neighbor of some F�F� 2 P, compute the orbit under
NF�F�. If the orbit is disjoint to P, pick a representative Fi

and compute an ni 2 N with ntr
i Fini 2 P.

Step 5: Take the generating elements of Step 3 and the
ni of Step 4 together to form a generating set of N.

At the same time, it is now clear how to test
Z-equivalence of two Bravais groups G and H: One
performs the normalizer algorithm for G, ®nds one
H-perfect form for H and tries to match (in the sense of
Remark 9) this form with one of the G-perfect forms
computed before. The two groups are Z-equivalent if
and only if this works with exactly one of the (repre-
sentative) G-perfect forms and the isometry yields the
transforming element.

We would like to thank all those who have contrib-
uted to the algorithms, implementation, and checking of
CARAT, in particular G. Nebe, H. BruÈ ckner, S. KuÈ hne,
A. Hilgers, and those who have read the manuscript, to
make it accessible to crystallographers, in particular
H. Wondratschek. CARAT is available via http://
samuel.math.rwth-aachen.de/~LBFM/carat/.
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